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Abstract—Falls among the elderly pose a significant health risk,
leading to severe injuries or even fatalities. Early and accurate
detection of falls is crucial for enabling timely intervention
and preventing adverse outcomes. This research conducts a
comprehensive analysis of existing multimodal approaches for
human fall detection that integrate data from diverse sources
such as video cameras, wearable sensors, and ambient sensors.
The key findings highlight the superiority of multimodal fusion
techniques over single-modality approaches in enhancing fall
detection accuracy and robustness. Through a critical review
and synthesis of prior studies, it was found that among novel
state-of-the-art methods, Single LSTM and CNN 1D, which rely
on single sensor data, have the poorest performance. In contrast,
the Graph Convolutional Network (GCN) + Transformer model
outperforms other models, reaching an F1-score of 1 based on
the NTU video-based dataset. However, this perfect score does
not imply that the model has no limitations or problems. In
this report, we also discuss why the GCN + Transformer model
performs better, the process of its implementation, its limitations
and problems, its strengths, and what can be done in the future
to enhance its capabilities for more complex real-world scenarios
that may involve occlusion, etc.

Index terms - Human Fall Detection, Multimodal Data Fusion,
Federated Learning, Knowledge Distillation, Transformers, Long
Short-Term Memory (LSTM), Convolutional Neural Networks
(CNNs), Graph Convolutional Networks (GCNs), Vision Trans-
formers (ViT)

I. INTRODUCTION

The alarming rise in annual falls among the elderly has
fueled research into reliable, efficient fall detection systems, a
critical need for our aging population. A significant portion,
28% to 42% of those over 65, fall each year, making falls a
leading cause of serious injury and death, especially for those
above 79. [7, 11] Conventional methods using video cam-
eras, wearable sensors, or floor-mounted devices often have
limitations. These limitations include the need for multiple
devices, restricted data collection areas, and solely focusing on
physical movements without considering individual user char-
acteristics. To address these limitations and improve overall
performance, multimodal approaches that integrate data from
various sources are a promising solution. This research project
will critically analyze existing multimodal fall detection meth-
ods, followed by methods for improving the best available
solutions. This will be done by synthesizing current knowl-
edge, identifying best practices, and proposing methodological
improvements. The knowledge gained from this project will
guide researchers and practitioners in designing innovative

solutions that leverage the strengths of multimodal data while
addressing challenges like data heterogeneity and the need for
personalization.

Fig. 1: Elderly Population: Falls and Injury Rates - Expected
Increase Between 2018 and 2030 [8]

II. RELATED WORK

A. Existing Methods

The current literature is focused on a variety of method-
ologies for fall detection, categorized by their primary data
source: sensor-based, vision-based, and multimodal. Sensor-
based approaches (employed in [1, 3, 6]) rely on data from
accelerometers, gyroscopes, and similar sensors to capture
physical movements, with [1] incorporating biometric infor-
mation like age and gender for personalized fall detection.
Vision-based approaches (explored in [3, 5]) utilize cameras to
capture video data, where [3] leverages human pose estimation
to track subjects and extract features relevant to falls, while
[5] investigates Convolutional Neural Networks (CNNs) for
extracting informative patterns from camera images. Multi-
modal fall detection combines sensor data with visual data
(addressed in [2, 5]), with [2] proposing an input-level fusion
approach merging data streams before feature extraction, and
[5] exploring separate feature extraction for each data type,
followed by later fusion.

Deep learning architectures are a popular choice for fall
detection models (used in [1, 4, 5, 6]). For instance, [1]
applies a Temporal Fusion Transformer (TFT) for analyzing
time series sensor data, while [4] and [6] explore Transformers
for classifying human pose key points. [5] investigates a
wider range of models including Neural Networks, XGBoost,
CatBoost, and CNNs for processing both sensor and camera
data. Notably, [2] introduces a federated learning framework
that addresses privacy concerns during fall detection using
multimodal data, allowing training of a fall detection model
while keeping user data on their devices. These papers high-
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light the ongoing exploration of diverse methodologies for fall
detection, with the selection of the most suitable technique
depending on factors such as the type of data available, the
need for privacy preservation, and the desired level of accuracy
in fall detection.

B. Available Datasets

This section explores the specific data sources leveraged
by the reviewed papers, highlighting the fascinating diversity
employed in this field.

• Sensor-based Datasets:
Several studies leverage sensor data for fall detection, with

varying degrees of complexity [1, 4, 6]. For instance, [1]
focuses on publicly available datasets like SmartFall, Notch,
DLR, and MobiAct, which primarily contain readings from
accelerometers and gyroscopes worn by participants. This
approach offers a simple and widely accessible method for fall
detection. Building upon sensor data, [4] utilizes the University
of Rzeszow Fall Detection (URFD) Dataset, which includes
accelerometer data alongside depth and RGB images from
Kinect cameras for a more comprehensive view. Similarly, [6]
employs the KFall dataset, specifically designed for pre-fall
detection using data from a nine-axis inertial sensor worn on
the lower back.

• Multimodal Datasets:
Several studies advocate for a multimodal approach to fall
detection, incorporating data from various sources beyond
sensors. For instance, [2] and [3] leverage the UP-Fall dataset,
which encompasses a diverse range of data modalities, includ-
ing wearable sensors capturing acceleration, angular velocity,
and light levels at various body locations, infrared sensors de-
tecting activity disruptions, and cameras providing visual data.
This richness of data allows for a more robust and comprehen-
sive understanding of fall events. Pushing the boundaries even
further, the study by [5] also utilizes the UP-Fall Detection
dataset but takes an innovative approach by integrating data
from wearable sensors placed on multiple body parts, an EEG
headset for monitoring brainwave activity, infrared sensors,
and dual cameras, thereby enabling a holistic and multifaceted
analysis of fall events through a comprehensive multimodal
fusion strategy.

Fig. 2: The monitoring site utilizes a network of 8 sensors: 2
cameras and 6 infrared sensors for perimeter security, along
with 6 wearable sensors for human monitoring.

Activity ID Description Durations

1 Falling forward using hands 10
2 Falling forward using knees 10
3 Falling backward 10
4 Falling sideways 10
5 Falling sitting in empty chair 10
6 Walking 60
7 Standing 60
8 Sitting 60
9 Picking up an object 10
10 Jumping 30
11 Laying 60

TABLE I: Available activities in the UP-Fall dataset with their
ID, description, and duration of videos.

• Personalization and Dataset Scope:
Interestingly, some studies tend to incorporate user-specific
biometric data (age, gender, height, weight) from certain
datasets when available, highlighting a potential avenue for
improving fall detection accuracy by tailoring it to individual
characteristics [1]. Studies by [3] and [6] try to focus on
relatively controlled settings with a limited number of subjects
and activities. Conversely, [4] and [5] utilize larger datasets
with a wider variety of daily activities, offering a more
generalizable view of fall detection across diverse scenarios.

C. Common themes, Contradictions, and Gaps

Several key themes emerge from the literature on fall
detection research. This research area is making significant
progress towards improved accuracy, user privacy, and real-
world applicability. There is a strong consensus on the benefits
of data fusion, where combining information from wearable
sensors and cameras leads to better fall detection than relying
on a single data source ([2, 5]). This paves the way for
future systems that leverage multiple sensors for a more
comprehensive understanding. Additionally, privacy concerns,
especially with camera data, are being addressed by techniques
like federated learning (proposed in [2]). This approach allows
training models while keeping user data on their devices, offer-
ing a promising solution to balance privacy and effectiveness.

However, challenges remain. While many studies achieve
high accuracy in controlled environments [3, 4], the limitations
of current datasets are highlighted. These datasets often lack
the complexities of real-world scenarios, such as imbalanced
fall occurrences or varying lighting conditions [3, 4]. This
necessitates the development of more diverse and realistic
datasets to ensure models can generalize well to real-world
situations. Furthermore, ongoing exploration of new deep-
learning architectures for fall detection is underway [4, 6].
Studies showcase the potential of transformers and knowledge
distillation techniques for achieving high accuracy and effi-
ciency [4, 6]. However, these approaches often rely on accurate
human pose estimation, which can be difficult in real-world
scenarios with occlusions, as highlighted in [4].

Several interesting contradictions and gaps emerge when
considering future directions in fall detection research. One
key issue is data imbalance in current datasets. As identified in

2



[3], these datasets often have far fewer fall examples compared
to everyday activities. This can lead to models biased towards
non-fall events, potentially missing real falls. Additionally, a
trade-off exists between privacy and generalizability. While
federated learning offers strong privacy protections, it can also
lead to lower accuracy due to the variations in data across
different users’ devices [2]. Similarly, knowledge distillation,
a technique showcased in [6] for reducing the computational
load in fall detection systems, might come at the cost of some
accuracy. Finding the right balance between these competing
factors is essential for developing practical fall detection
systems.

III. METHODOLOGY

A. Evaluation Matrices

In this Project, we assessed fall detection frameworks’ ef-
fectiveness as a binary classification problem (fall vs. non-fall)
using various metrics. Metrics like accuracy, precision, recall,
F1-score, and AUC-ROC gauged the model’s ability to identify
true falls and avoid false alarms, while also considering
class imbalance in the data. Additionally, confusion matrices
provided a detailed breakdown of the model’s performance
across different fall and non-fall scenarios, revealing strengths,
weaknesses, and areas for improvement. Finally, testing on
diverse datasets with simulated and real-world falls ensured
the framework’s robustness and ability to generalize to real-
life situations.

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 score =
2× Precision × Recall

Precision + Recall

Table II presents a comprehensive analysis of the perfor-
mance of various machine-learning models in detecting human
falls across several datasets. While more detailed versions of
the analysis were conducted, this table summarizes the best
and worst performances for each method and dataset.

The key findings from the table reveal several notable
trends. The top-performing models include the Graph Con-
volutional Network (GCN) + Transformer [15] (rely only on
video data), which achieved a perfect score of 1.0 across
all evaluation metrics on the NTU dataset, and the Gramian
Angular Field (GAF) model [16] with time series and C2
(camera 2) data fusion, which achieved an F1-score of 0.9992,
precision of 0.9984, recall of 1.0, and accuracy of 0.9993 on
the UP-Fall dataset. Additionally, the CNN-based data fusion
(S (sensor) + C1 + C2) model performed exceptionally well
on the UP-Fall dataset, with an F1-score of 0.9955, precision
of 0.9956, recall of 0.9956, and accuracy of 0.9956.

Transformer-based models, such as the Transformer and
Transformer (Temporal Fusion), also demonstrated strong per-
formance across various datasets, including NTU, MobiAct,
Kfall, UR, Notch, and DLR. The Transformer model achieved
an F1-score of 0.9910 on the NTU dataset, while the Trans-
former (Temporal Fusion) model achieved F1-scores ranging
from 0.8770 to 0.9702 on the MobiAct, Notch, and DLR
datasets. The table also highlights the performance of Vision
Transformer (ViT) models, with the Vision Transformer (Tiny)
model achieving an F1-score of 0.9384 on the Kfall dataset and
the CNN + ViT Knowledge Distillation (PreFallKD) model
achieving an F1-score of 0.9266 on the same dataset.

In contrast, LSTM-based models exhibited varying perfor-
mance. The LSTM (5 features-based) model performed well
on the UP-Fall dataset, with an F1-score of 0.9256, but the
LSTM (Stacked) and LSTM (Single) models struggled on the
SmartFall and MobiAct datasets, respectively, with F1-scores
of 0.1378 and 0.0040. The table also includes the performance
of other models, such as the Logistic Regression model,
which achieved an F1-score of 0.6065 on the UP-Fall dataset,
and the Temporal Attention Convolutional Neural Networks
(TACN) model, which had the lowest performance on the
DLR dataset, with an F1-score of 0.0825. When examining
the trends and comparisons, the table reveals that the models
generally performed better on the NTU, UP-Fall, and Kfall
datasets compared to the other datasets, while the SmartFall
and DLR datasets posed more challenges for the models, with
lower F1-scores across the board.

In terms of model performance comparison, Transformer-
based models, such as the GCN + Transformer and Trans-
former, consistently outperformed other models across mul-
tiple datasets. Vision Transformer (ViT) models also showed
promising results on the Kfall dataset. LSTM-based models
exhibited varying performance, with the LSTM (5 features-
based) performing well on the UP-Fall dataset, but the
LSTM (Stacked) and LSTM (Single) models struggling on
the SmartFall and MobiAct datasets, respectively. Regard-
ing the evaluation metric trends, the top-performing models
achieved near-perfect or perfect scores across all evaluation
metrics, indicating their strong overall performance. However,
some models, like the Logistic Regression and TACN, had
significant discrepancies between their F1 scores, precision,
recall, and accuracy, suggesting potential imbalances in their
performance.

IV. RESULTS AND DISCUSSION

Benchmark evaluations demonstrate the superior perfor-
mance of the GCN+Transformer model compared to other
models in fall detection tasks. However, this evaluation has
been conducted on specific datasets and under controlled
conditions, which may not accurately reflect the challenges
and complexities of real-world deployment scenarios. Sim-
ply put, the model’s performance is highly likely to face
significant challenges when deployed in practical, real-world
settings. This section delves into an in-depth analysis of
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Dataset Model F-1 score Precision Recall Accuracy

NTU Graph Convolutional Network (GCN) + Transformer 1.0000 1.0000 1.0000 1.0000
UP-Fall Gramian Angular Field (GAF) (Time Series and C2 data fusion) 0.9992 0.9984 1.0000 0.9993
UP-Fall Gramian Angular Field (GAF) (Time Series and C1 data fusion) 0.9985 0.9984 0.9987 0.9987
UP-Fall CNN-based data fusion (S + C1 + C2) 0.9955 0.9956 0.9956 0.9956
NTU Transformer 0.9910 0.9910 0.9910 0.9910
MobiAct Transformer (Temporal Fusion) 0.9702 0.9702 0.9702 0.9883
Kfall Vision Transformer (Tiny) 0.9384 0.9202 0.9573 0.9836
Kfall CNN + ViT Knowledge Distillation (PreFallKD) 0.9266 0.9062 0.9479 0.9805
UP-Fall LSTM (5 features-based) 0.9256 0.8976 0.9562 0.9822
UR Graph Convolutional Network (GCN) + Transformer 0.9030 0.9250 0.9000 0.9000
UR Transformer 0.8930 0.9120 0.9000 0.9000
Notch Transformer (Temporal Fusion) 0.8770 0.8766 0.8775 0.9798
Kfall CNN (Baseline) 0.8589 0.9236 0.8027 0.9656
DLR Transformer (Temporal Fusion) 0.7187 0.8393 0.7017 0.9490
UP-Fall Logistic Regression 0.6065 0.6606 0.5445 0.9261
SmartFall Transformer (Temporal Fusion) 0.4617 0.4075 0.5326 0.9314
Notch CNN (1D) 0.1859 0.1155 0.4754 0.5899
SmartFall LSTM (Stacked) 0.1378 0.0762 0.7155 0.5057
DLR Temporal Attention Convolutional Neural Networks (TACN) 0.0825 0.1035 0.1123 0.0042
MobiAct LSTM (Single) 0.0040 0.0567 0.0588 0.0354

TABLE II: The table presents a comprehensive analysis of the performance of various machine learning models in detecting
human falls across several datasets. The evaluation metrics used to assess the models’ effectiveness include F1-score, precision,
recall, and accuracy.

the GCN+Transformer architecture, exploring the factors con-
tributing to its outstanding performance. Additionally, it ex-
amines the model’s training process, key strengths and limita-
tions, and potential solutions to mitigate its possible downsides
when deployed in complex real-world scenarios. By under-
standing the intricacies of this model, we can better appreciate
its capabilities and identify areas for further improvement,
ultimately paving the way for more robust and reliable fall
detection solutions applicable to diverse real-world environ-
ments.

Fig. 3: Fall detection using a transformer-based pipeline

Fig. 4: Fall detection with GCN and Transformer combination

A. Dataset

The training of this model has been based on two datasets:
the University of Rzeszow Fall Detection (URFD) dataset and
the NTU RGB+D dataset [9]. The URFD dataset was metic-
ulously curated by Kwolek and Kepski in 2014. Comprising
a diverse array of 40 daily living activities and 30 explicit

fall sequences, this dataset provides a balanced representation
of both positive (fall) and negative (non-fall) scenarios. The
data acquisition process leveraged the cutting-edge Kinect
camera technology, simultaneously capturing depth and RGB
images from two distinct viewpoints. Furthermore, the dataset
incorporates accelerometer data, enriching the contextual in-
formation and enabling more comprehensive analyses.

On the other hand, the NTU RGB+D dataset, a resource
encompassing a staggering 56,880 samples, contributes a
broader scope by spanning 60 distinct action classes. This
extensive collection not only encompasses daily behaviors
but also incorporates a wide range of health-related actions,
ensuring a holistic representation of human movement and
activity. Notably, the dataset was meticulously constructed
through the participation of 40 individuals, further augmenting
its diversity and real-world applicability. The combination
of these two datasets, each offering unique strengths and
characteristics, facilitated a rigorous evaluation of the proposed
model’s performance, enabling comprehensive analyses across
various fall detection scenarios, action classes, and contextual
settings.

B. Implementation Process of GCN+Transformer Model

The GCN+Transformer model follows a two-stage pipeline
for fall detection using human pose keypoint data. [12] The
first stage involves spatial encoding using a Graph Con-
volutional Network (GCN), and the second stage performs
temporal encoding using a Transformer architecture.

In the initial stage, the model takes a sequence of human
pose key points extracted from video frames as input. [13]
These key points are processed through a GCN layer, which
treats the key points as nodes in a graph and applies graph
convolutions to learn meaningful spatial representations. The
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graph convolution operation can be mathematically expressed
as:

X ′ = σ(D̂− 1
2 ÂD̂− 1

2XW )

Here, X is the input feature matrix (key points), Â is the
adjacency matrix representing the graph structure, D̂ is the
degree matrix (diagonal matrix with node degrees), W is the
learnable weight matrix, and σ is a non-linear activation func-
tion. The GCN layer effectively encodes the spatial context
and dependencies between key points, capturing the structural
and positional information crucial for understanding human
poses and actions. The output of this layer is a sequence of
spatial embeddings, one for each frame in the input sequence.

In the second stage, these spatial embeddings are fed into
a Transformer architecture for temporal encoding. The core
component of the Transformer is the Multi-Head Attention
mechanism, which can be expressed mathematically as:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)WO

headi = Attention(QWQ
i ,KWK

i , V WV
i )

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

Where Q, K, V are the Query, Key, and Value matrices,
WQ

i , WK
i , WV

i are learnable weight matrices, and dk is the
dimension of the Key vectors.

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l))

Xt = GCN(Xt)

Yt = Transformer([X1, X2, . . . , Xt])

The Multi-Head Attention mechanism allows the Trans-
former to capture long-range temporal dependencies and
patterns in the sequence of spatial embeddings, effectively
encoding the temporal information crucial for fall detection.
Across both datasets, training parameters included 30 epochs,
a batch size of 32, and an initial learning rate of 0.0001.
The Reduce-On-Plateau scheduler facilitated adaptive learn-
ing rate adjustments during training. [10] The robustness of
the GCN+Transformer model was evaluated across various
scenarios, including varying camera angles, partial occlusions,
and frame quantities. Assessments showed that the model out-
performed previous Transformer-only models, demonstrating
superior precision, recall, F1 score, and accuracy, particularly
in challenging conditions like occlusions and diverse viewing
angles. The fusion of spatial and temporal information through
GCN and Transformer layers allowed the model to capture
intricate dependencies and patterns in human pose keypoint
data, leading to enhanced performance in fall detection and
other human action recognition tasks.

C. Training process in more detail

In the experimental setup, we conducted extensive explo-
rations to determine the optimal hyperparameter configuration
for the GCN+Transformer model. A conventional 60-25-15
training-validation-testing split was adopted for both datasets,
ensuring a robust and unbiased evaluation of the model’s
capabilities.

The training phase involved a meticulous examination of
various architectural configurations for the Transformer com-
ponent. We systematically adjusted hyperparameters such as
the number of layers, attention heads, and feed-forward di-
mensions, thoroughly exploring their impact on the model’s
performance. After a comprehensive analysis, the optimal con-
figurations that emerged as the best-performing architectures
were a Transformer with 2 layers, 8 attention heads, and a
feed-forward dimension of 128 as well as a Transformer with 2
layers, 4 attention heads, and a feed-forward dimension of 256.
This configuration not only exhibited superior performance
on the training and validation sets but also demonstrated
remarkable generalization capabilities on the held-out test
sets. Consequently, this optimal Transformer architecture was
integrated as the backbone for the temporal encoding stage
within the GCN+Transformer model, ensuring a harmonious
fusion with the spatial encoding capabilities provided by the
GCN layer.

Fig. 5: Validation accuracy per epoch

Fig. 6: Validation loss per epoch

D. Additional Considerations

We also conducted an extensive ablation study to evaluate
the GCN+Transformer model’s performance across varying
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camera angles and its generalization capabilities. When trained
and tested on NTU View 1, representing a frontal perspective
similar to a social robot’s vantage point, the model achieved
perfect precision, recall, F1 score, accuracy, and geometric
mean scores of 1.0. However, when tested on NTU View 2 and
View 3, which introduced angular deviations from the training
viewpoint, the model’s performance metrics experienced slight
declines, albeit maintaining a high degree of accuracy and
effectiveness. This robustness underscores the model’s strong
generalization capabilities and adaptability to diverse perspec-
tives, a critical trait for practical applications where camera
placement may be constrained or dynamic.

We also assessed the model’s resilience under various
occlusion patterns, simulating three distinct scenarios: Type 1
(lower-body occlusion), Type 2 (torso occlusion), and Type
3 (upper limb occlusion). In Type 1 scenarios, where cru-
cial joints for fall detection remained visible, the model
exhibited remarkable resilience, achieving high-performance
metrics. However, in Type 2 cases, where torso-related key
points were obstructed, the model’s performance experienced
a notable decline, highlighting its sensitivity to obstructions
in this region. Intriguingly, in Type 3 scenarios, the model
demonstrated commendable performance, facilitated by the
preserved visibility of lower limb and torso key points. This
study emphasized the importance of unobstructed visibility of
specific body regions, particularly the torso and lower limbs,
for optimal fall detection performance.

To investigate the optimal frame quantity for achieving peak
performance, we evaluated the model’s performance across
skip rates of 1, 7, and 11. At a skip rate of 1, where no
frames were skipped, the model exhibited robust performance,
attributed to its ability to leverage the full temporal resolution
and capture subtle movements. However, as the skip rate in-
creased to 7, the model’s performance experienced a noticeable
decline, and at a skip rate of 11, the geometric mean plum-
meted to 0, indicating a complete failure to accurately detect
falls. This study provided valuable insights into the trade-
off between computational efficiency and model performance,
emphasizing the need for judicious selection of the skip rate
to maintain optimal anomaly detection capabilities. Processing
consecutive frames without skipping yielded the most reliable
and accurate fall detection performance.

E. Strength of GCN+Transformer model

The model’s strength lies in its two-fold encoding process:
spatial encoding using GCNs and temporal encoding using
Transformers. The GCN layer is designed to capture the spatial
relationships and dependencies between the key points in each
individual frame. It treats the key points as nodes in a graph
and applies graph convolutions to learn meaningful spatial
representations, effectively encoding the spatial context and
dependencies between key points, and capturing the structural
and positional information crucial for understanding human
poses and actions. On the other hand, the Transformer ar-
chitecture is well-suited for capturing long-range temporal
dependencies and patterns in sequential data, such as the

sequence of spatial embeddings obtained from the GCN layer.
The Multi-Head Attention mechanism allows the Transformer
to attend to different parts of the input sequence in parallel,
effectively capturing long-range dependencies and temporal
patterns. This fusion of spatial and temporal information [14]
enables the model to capture the intricate dependencies and
patterns present in the human pose keypoint data, leading to
superior performance in fall detection and other human action
recognition tasks.”

F. Limitations

Based on our interpretability analysis, domain expert eval-
uation, sensitivity analysis, and stress testing, we identified
several potential issues in the GCN+Transformer model that
could impede its performance when integrated into real-world
scenarios. These issues are detailed below.

1) Reliance on Human Pose Estimation (HPE) Key Points:
Limitation: The model’s performance heavily relies on the
quality and availability of HPE key points, which means
valuable contextual information captured by RGB data is not
utilized.
Potential Mitigation: Explore multi-stream architectures that
can effectively fuse RGB data with pose key points, leveraging
both sources of information for more fine-grained decision-
making.
Alternative Approach: Investigate end-to-end models that
can directly process raw video data, eliminating the need for
explicit pose estimation as a preprocessing step.

2) Additional Preprocessing Step and Latency Concerns:
Limitation: The dependence on HPE introduces an additional
preprocessing step before inference, potentially affecting real-
time implementation and suitability for low-latency applica-
tions.
Potential Mitigation: Optimize the pose estimation pipeline
and leverage hardware acceleration (e.g., GPUs) for efficient
preprocessing and inference.
Alternative Approach: Explore lightweight architectures
or model compression techniques to reduce computational
overhead and enable real-time performance on resource-
constrained devices.

3) Dependence on Training Data Diversity and Representa-
tiveness: Limitation: The model’s effectiveness is contingent
on the diversity and representativeness of the training data,
struggling to generalize to unseen situations when the dataset
lacks comprehensive coverage.
Potential Mitigation: Employ advanced data augmentation
techniques, such as synthetic data generation and domain ran-
domization, to artificially expand the diversity of the training
data.
Alternative Approach: Investigate few-shot or meta-learning
approaches that can adapt to new scenarios with limited data,
reducing the reliance on large, diverse datasets.

4) Sensitivity to Occlusions: Limitation: The model’s per-
formance may be significantly impacted by occlusions, high-
lighting the need for enhanced robustness to various occlusion
scenarios.
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Potential Mitigation: Explore attention mechanisms and self-
supervised learning techniques that can learn to focus on
relevant body parts and handle partial occlusions effectively.
Alternative Approach: Investigate hybrid approaches that
combine the GCN+Transformer model with depth or infrared
sensors, providing additional modalities less susceptible to
occlusions.

5) Transformer Complexity and Training Challenges: Lim-
itation: Transformers are inherently complex, making them
challenging to train and necessitating careful consideration of
computational resources and training strategies.
Potential Mitigation: Leverage techniques like knowledge
distillation, where a larger model transfers knowledge to a
smaller model, reducing computational requirements while
preserving performance.
Alternative Approach: Explore efficient transformer variants
or alternative architectures, such as convolution-augmented
transformers or sparse transformers, that can achieve compet-
itive performance with reduced complexity.

V. CONCLUSION

In this project, we comprehensively reviewed multimodal
human fall detection systems. By critically analyzing existing
literature, we identified best practices, potential improvements,
and key findings. Our analysis underscored the effectiveness
of integrating multiple data sources (vision, wearables, am-
bient sensors) for robust fall detection. Amongst the explored
techniques, the GCN+Transformer model emerged as a leader,
demonstrating superior accuracy and resilience to challenging
scenarios. We also identified limitations, such as potential sen-
sitivity to occlusions. While the GCN+Transformer presents a
promising solution for accurate fall detection, particularly in
privacy-conscious settings, its dependence on human pose esti-
mation and training data diversity requires further exploration.

VI. FUTURE WORK

The combination of Graph Convolutional Networks (GCNs)
and Transformer architectures demonstrates the potential for
fall detection tasks; however, additional investigations and
advancements are necessary to fully leverage this approach.

A. Enhancing Resilience of the Model to Occlusions and
Complex Scenarios through:

• Exploration of advanced data augmentation techniques
• Incorporation of additional data modalities

B. Explore fall detection methods that bypass pose estimation
for real-time applications through:

• Investigate methods to reduce the model’s reliance on
human pose key points

• Eliminate the additional preprocessing step required for
real-time inference

• Enable seamless integration into practical applications

C. Expanding Dataset Diversity and Generalization through:

• Capture data in real-world environments (indoor, outdoor,
varying lighting)

• Diversify participant demographics (age, gender, body
type, abilities)

• Incorporate diverse fall scenarios (contexts, positions,
intensities)

• Include a wide range of non-fall activities of daily living
• Utilize multiple data sources (video, wearable sensors,

ambient sensors)
• Thoroughly annotate data (labels, contextual information)
• Expand dataset size and continuously update with new

data
• Ensure privacy and ethical considerations (consent,

anonymization)
• Validate and test the dataset (splits, cross-validation)
• Include a wider range of fall and non-fall scenarios in the

training dataset
• Improve the model’s generalization capabilities across

diverse scenarios

D. Exploring Federated Learning

Investigate the feasibility of a federated learning approach to
enable collaborative training of a global model across multiple
clients and preserve the privacy of user data on individual
devices.

E. Incorporating Additional Modalities

Enhance fall detection accuracy and robustness through the
exploration of the integration of environmental sensors and
other data sources.

F. Real-World Evaluation and Field Trials

Conduct field trials and real-world evaluations to assess
practical viability and identify potential challenges. Refine the
system based on real-world performance.

VII. INDIVIDUAL CONTRIBUTIONS

Morteza Mogharrab:
• Re-implemented the proposed GCN + Transformer model

architectureand Designed the overall framework
• Incorporated the Graph Convolutional Network (GCN)

layer for spatial encoding
• Integrated the Transformer architecture for temporal en-

coding Spearheaded data fusion and multimodal integra-
tion efforts

• Ensured an effective combination of data sources (video
cameras, wearable sensors, ambient sensors)

• Led the writing and documentation of the research Doc-
umented the methodology, implementation details, and
analytical discussions

Ritika:
• Focused on evaluation and analysis aspects
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Fig. 7: Performance comparison on NTU (top row) and UR (bottom row) datasets. The left column shows ROC curves and
confusion matrices for the Transformer-only architecture. The right column presents the results for the GCN+Transformer
architecture.

• Conducted extensive experiments to assess the perfor-
mance of the proposed model and baseline approaches
across multiple datasets

• Provided insights into strengths, weaknesses, and gener-
alization capabilities of different models

• Played a crucial role in dataset preparation Ensured
proper formatting, preprocessing, and splitting of data
into training, validation, and testing sets

• Contributed to data fusion and multimodal integration
• Collaborated with Morteza to effectively combine data

from various sources
Sai Sarath Movva:
• Conducted an extensive literature review on fall detection

systems
• Identified common themes, contradictions, and gaps in

the current state of knowledge
• Addressed privacy and ethical considerations
• Ensured compliance with relevant regulations and best

practices
• Responsible for the presentation and dissemination of

research findings
• Prepared presentation materials
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